Mathematics Day Activities for Schools, National Mathematics Day Activities For Schools, Activities For International Mathematics Day
Celebrating the Genius of Srinivasa Ramanujan
National Mathematics Day is celebrated every year on December 22nd to commemorate the birth anniversary of Srinivasa Ramanujan, one of India’s greatest mathematicians. Ramanujan was a self-taught genius who made significant contributions to various fields of mathematics, including number theory, infinite series, and continued fractions.
Table of Contents
Ramanujan’s Early Life
Srinivasa Ramanujan was born in Erode, India, on December 22, 1887. He came from a humble background and had limited access to formal education. However, he was fascinated by mathematics from an early age and began teaching himself the subject using books borrowed from local libraries.
Ramanujan’s mathematical abilities were soon recognized by his teachers and mentors. He won several scholarships and prizes for his mathematical prowess, and he eventually came to the attention of G.H. Hardy, a renowned British mathematician.
Ramanujan’s Work with Hardy
Hardy invited Ramanujan to England in 1913, where the two mathematicians worked together for several years. During this time, Ramanujan published over 3,900 mathematical results, many of which were groundbreaking and original.
Despite his remarkable achievements, Ramanujan struggled to adapt to life in England. He was a deeply religious man who felt out of place in Western society. He also suffered from health problems, and he returned to India in 1919.
Ramanujan’s Legacy
Srinivasa Ramanujan passed away in 1920 at the age of 32. However, his mathematical legacy lives on. His work has had a profound impact on various fields of mathematics, and he is considered one of the greatest mathematicians of the 20th century.
National Mathematics Day
National Mathematics Day is celebrated to honor Srinivasa Ramanujan’s contributions to mathematics and to inspire young people to pursue careers in mathematics. On this day, schools and universities across India organize various events, such as math competitions, seminars, and workshops, to promote mathematics education.
Conclusion
Srinivasa Ramanujan was a true mathematical genius who made significant contributions to the field of mathematics. His work continues to inspire mathematicians around the world, and his legacy is celebrated every year on National Mathematics Day.
Mathematics Day Activities For Schools: (рдЧрддрд┐рд╡рд┐рдзрд┐рдпрд╛рдБ)
Sure, here are some activities to celebrate Mathematics Day at school:
- Math Scavenger Hunt:┬аCreate a list of math-related clues,┬аsuch as “Find something that has 4 sides” or “Find something taller than you.” Hide the clues around the school and have students work in teams to find them.
- Math Bingo: Create bingo cards with numbers or math problems on them. Call out numbers or read math problems, and have students mark off the corresponding squares on their cards. The first student to get a bingo wins.
- Math Story Problems: Have students write their own math story problems. For example, “A farmer has 12 chickens. How many eggs do they lay in a week if each chicken lays 1 egg per day?”
- Math Olympics: Organize a series of math competitions, such as a timed multiplication table challenge, a geometry puzzle competition, or a problem-solving contest.
- Math Relay Race: Divide the class into teams and have them race to solve math problems. The first team to finish correctly wins.
- Math Fashion Show: Have students create outfits that represent a math concept, such as fractions, decimals, or geometry. They can use recycled materials, markers, or paint to decorate their outfits.
- Math Project: Have students research and create a presentation on a math-related topic, such as the history of math, the applications of math in the real world, or a famous mathematician.
- Math Symposium: Organize a symposium where students present their research on math-related topics.
- Math Guest Speaker: Invite a mathematician or someone who uses math in their career to speak to the class.
- Math Movie Marathon: Set a day for screening movies and documentaries that revolve around mathematicians, famous theorems, or mathematical concepts.
- Math Storytelling: Students can create and narrate a story incorporating mathematical concepts and figures. This activity encourages creativity and application of knowledge, making learning more fun and memorable.
- Guest Speaker Session: Invite mathematicians, scientists, or professionals who heavily utilize mathematics in their field to talk about their work and experiences. This can inspire student interest in academic and professional avenues for mathematics enthusiasts.
- Math Exhibition: Organize an exhibition showcasing student projects and artistic creations based on mathematical concepts. Encourage them to express their understanding of mathematical principles through art, crafts, or interactive displays.
- Math Games: Organize a game day with activities like Sudoku, KenKen, mathematical board games, or logic puzzles. Encourage healthy competition and engage student interest in strategic and logical thinking through playful methods.
- Math Scavenger Hunt: Design a school-wide scavenger hunt incorporating mathematical clues and hints related to different locations within the school. This promotes teamwork, problem-solving, and knowledge application in a real-world environment.
These diverse activities can create a memorable and engaging experience for students, fostering a love for mathematics and appreciating its importance in various fields.
Model For Mathematics Day (рд░рд╛рд╖реНрдЯреНрд░реАрдп рдЧрдгрд┐рдд рджрд┐рд╡рд╕ рдХреЗ рд▓рд┐рдП рдореЙрдбрд▓)
рдЖрдк рдЗрд╕ рдЕрд╡рд╕рд░ рдкрд░ рдЕрдкрдиреА Maths рдХреА book рдХреЗ рдХрд┐рд╕реА рднреА Chapter рдкрд░ рдЖрдзрд╛рд░рд┐рдд рдореЙрдбрд▓ рдмрдирд╛ рд╕рдХрддреЗ рд╣реИрдВ I рдЖрдкрдХреА help рдХреЗ рд▓рд┐рдП рд╣рдордиреЗ рдиреАрдЪреЗ рдХреБрдЫ рдореЙрдбрд▓реНрд╕ рдмрдирд╛рдиреЗ рдХреА рд╡рд┐рдбрд┐рдпреЛ рджреА рд╣реИрдВ, рдЙрдирдХреЛ рджреЗрдЦрдХрд░ рдЖрдк рдЕрдкрдирд╛ рдореЙрдбрд▓ рдмрдирд╛ рд╕рдХрддреЗ рд╣реИрдВ I
рдореЙрдбрд▓ рдмрдирд╛рдиреЗ рдХреЗ рд▓рд┐рдП рдЖрдк рдпреЗ рд╡рд┐рдбрд┐рдпреЛ рджреЗрдЦ рд╕рдХрддреЗ рд╣реИрдВ – Watch Videos for making maths models
Speeches on National Mathematics Day (рдЧрдгрд┐рдд рджрд┐рд╡рд╕ рдХреЗ рд▓рд┐рдП рднрд╛рд╖рдг)
Speech-1
рдЖрдЬ рд╣рдо рдЧрдгрд┐рдд рдХреЗ рдЬрд╛рджреВрдЧрд░, рд╢реНрд░реАрдирд┐рд╡рд╛рд╕ рд░рд╛рдорд╛рдиреБрдЬрди рдЕрдпрдВрдЧрд░ рдЬреА рдХреА рд╕реНрдореГрддрд┐ рдХреЛ рдирдорди рдХрд░рддреЗ рд╣реИрдВ. рдПрдХ рдРрд╕реЗ рд╡реНрдпрдХреНрддрд┐, рдЬрд┐рд╕рдиреЗ рдмрд┐рдирд╛ рдХрд┐рд╕реА рдФрдкрдЪрд╛рд░рд┐рдХ рд╢рд┐рдХреНрд╖рд╛ рдХреЗ, рдЧрдгрд┐рдд рдХреА рджреБрдирд┐рдпрд╛ рдореЗрдВ рдХреНрд░рд╛рдВрддрд┐ рд▓рд╛ рджреАI рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдХрд╣рд╛рдиреА рдкреНрд░реЗрд░рдгрд╛ рд╕реЗ рднрд░реА рд╣реИ, рдпрд╣ рд╣рдореЗрдВ рд╕рд┐рдЦрд╛рддреА рд╣реИ рдХрд┐ рдкреНрд░рддрд┐рднрд╛ рдХрд┐рд╕реА рднреА рдкреГрд╖реНрдарднреВрдорд┐ рдореЗрдВ, рдХрд┐рд╕реА рднреА рдкрд░рд┐рд╕реНрдерд┐рддрд┐ рдореЗрдВ рдЦрд┐рд▓ рд╕рдХрддреА рд╣реИ.
рдмрд╛рд▓рдкрди рд╕реЗ рд╣реА рд░рд╛рдорд╛рдиреБрдЬрди рдХреЛ рд╕рдВрдЦреНрдпрд╛рдУрдВ рдХрд╛ рдореЛрд╣ рдерд╛I рд╡рд╣ рдШрдВрдЯреЛрдВ рддрдХ рдЙрдиреНрд╣реЗрдВ рдЬреЛрдбрд╝рддрд╛-рдШрдЯрд╛рддрд╛ рд░рд╣рддрд╛, рдЙрдирдХреЗ рдЕрдиреЛрдЦреЗ рдкреИрдЯрд░реНрди рддрд▓рд╛рд╢рддрд╛ I рдФрдкрдЪрд╛рд░рд┐рдХ рд╢рд┐рдХреНрд╖рд╛ рдкреНрд░рд╛рдкреНрдд рдХрд░рдиреЗ рдХреЗ рдЕрд╡рд╕рд░ рди рдорд┐рд▓рдиреЗ рдХреЗ рдмрд╛рд╡рдЬреВрдж, рдЙрд╕рдиреЗ рдкреБрд╕реНрддрдХрд╛рд▓рдпреЛрдВ рд╕реЗ рдЧрдгрд┐рдд рдХреЗ рдЧреНрд░рдВрдереЛрдВ рдХреЛ рдЙрдард╛-рдЙрдард╛рдХрд░ рдкрдврд╝ рдбрд╛рд▓рд╛I рдЙрд╕рдХреА рдкреНрд░рддрд┐рднрд╛ рдХреЛ рдкрд╣рдЪрд╛рдирдиреЗ рдореЗрдВ рд╡рд┐рд▓рд┐рдпрдо рдореИрдХ-рдореЛрд╣рди рдирд╛рдордХ рдПрдХ рдмреНрд░рд┐рдЯрд┐рд╢ рдЧрдгрд┐рддрдЬреНрдЮ рдХреА рднреВрдорд┐рдХрд╛ рдорд╣рддреНрд╡рдкреВрд░реНрдг рдереАI рдореИрдХ-рдореЛрд╣рди рдиреЗ рд░рд╛рдорд╛рдиреБрдЬрди рдХреЛ рдЗрдВрдЧреНрд▓реИрдВрдб рднреЗрдЬрд╛, рдЬрд╣рд╛рдБ рдЙрд╕реЗ рдЧрдгрд┐рдд рдХреЗ рджрд┐рдЧреНрдЧрдЬреЛрдВ рдХреЗ рд╕рд╛рде рдХрд╛рдо рдХрд░рдиреЗ рдХрд╛ рдореМрдХрд╛ рдорд┐рд▓рд╛I
рдЗрдВрдЧреНрд▓реИрдВрдб рдореЗрдВ, рд░рд╛рдорд╛рдиреБрдЬрди рдиреЗ рдЕрд╡рд┐рд╢реНрд╡рд╕рдиреАрдп рдЧрддрд┐ рд╕реЗ рдХрд╛рдо рдХрд┐рдпрд╛. рдЙрд╕рдиреЗ рд╕реИрдХрдбрд╝реЛрдВ рдЧрдгрд┐рддреАрдп рд╕реВрддреНрд░реЛрдВ рдХреА рдЦреЛрдЬ рдХреА, рдЬрд┐рдирдореЗрдВ рд╕реЗ рдЕрдзрд┐рдХрд╛рдВрд╢ рдЙрд╕ рд╕рдордп рддрдХ рдЕрдирд╕реБрдиреЗ рдереЗI рдЙрд╕рдХреА рдЧрдгрдирд╛рдПрдБ рдЗрддрдиреА рдЬрдЯрд┐рд▓ рдереАрдВ рдХрд┐ рдХрдИ рдЧрдгрд┐рддрдЬреНрдЮреЛрдВ рдХреЛ рд╡рд┐рд╢реНрд╡рд╛рд╕ рд╣реА рдирд╣реАрдВ рд╣реЛрддрд╛ рдерд╛I рд▓реЗрдХрд┐рди, рд╕рдордп рдХреЗ рд╕рд╛рде, рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдкреНрд░рддрд┐рднрд╛ рдХреЛ рдкреВрд░реА рджреБрдирд┐рдпрд╛ рдиреЗ рд╕рд▓рд╛рдо рдХрд┐рдпрд╛I
рд░рд╛рдорд╛рдиреБрдЬрди рдХрд╛ рдпреЛрдЧрджрд╛рди рд╕рд┐рд░реНрдл рд╕реВрддреНрд░реЛрдВ рддрдХ рд╣реА рд╕реАрдорд┐рдд рдирд╣реАрдВ рдерд╛I рдЙрд╕рдиреЗ рд╕рдВрдЦреНрдпрд╛рдУрдВ рдХреЗ рдмреАрдЪ рдЫрд┐рдкреЗ рд░рд╣рд╕реНрдпреЛрдВ рдХреЛ рдЙрдЬрд╛рдЧрд░ рдХрд┐рдпрд╛, рд╡рд┐рднрд┐рдиреНрди рдЧрдгрд┐рддреАрдп рдХреНрд╖реЗрддреНрд░реЛрдВ рдХреЗ рдмреАрдЪ рд╕рдореНрдмрдиреНрдз рд╕реНрдерд╛рдкрд┐рдд рдХрд┐рдП. рдЙрд╕рдХреА рдЦреЛрдЬреЛрдВ рдиреЗ рдХрдИ рд╡реИрдЬреНрдЮрд╛рдирд┐рдХ рдХреНрд╖реЗрддреНрд░реЛрдВ рдХреЛ рдЖрдЧреЗ рдмрдврд╝рд╛рдпрд╛, рдЦрд╛рд╕рдХрд░ рд╕рдВрдЦреНрдпрд╛ рд╕рд┐рджреНрдзрд╛рдВрдд рдФрд░ рдЕрдирдВрдд рд╢реНрд░реГрдВрдЦрд▓рд╛ рдХреЗ рдХреНрд╖реЗрддреНрд░ рдореЗрдВI
рд░рд╛рдорд╛рдиреБрдЬрди рдХрд╛ рдЬреАрд╡рди рдмреЗрд╣рдж рдХрдо, рдорд╛рддреНрд░ 32 рд╡рд░реНрд╖ рдХрд╛ рдерд╛. рд▓реЗрдХрд┐рди, рдЗрд╕ рдЫреЛрдЯреЗ рд╕реЗ рдЬреАрд╡рдирдХрд╛рд▓ рдореЗрдВ рдЙрдиреНрд╣реЛрдВрдиреЗ рдЬреЛ рдХрд░ рджрд┐рдЦрд╛рдпрд╛, рд╡рд╣ рд╕рджрд┐рдпреЛрдВ рддрдХ рдпрд╛рдж рд░рдЦрд╛ рдЬрд╛рдПрдЧрд╛. рд╡рд╣ рд╣рдореЗрдВ рд╕рд┐рдЦрд╛рддреЗ рд╣реИрдВ рдХрд┐ рдЬреБрдиреВрди рдФрд░ рд▓рдЧрди рдХреЗ рд╕рд╛рде, рдХреЛрдИ рднреА рд▓рдХреНрд╖реНрдп рд╣рд╛рд╕рд┐рд▓ рдХрд┐рдпрд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИI рдкрд░рд┐рд╕реНрдерд┐рддрд┐рдпреЛрдВ рд╕реЗ рд╣рд╛рд░ рди рдорд╛рдирддреЗ рд╣реБрдП, рд▓рдЧрд╛рддрд╛рд░ рдореЗрд╣рдирдд рдХрд░рддреЗ рд░рд╣рдирд╛ рд╣реА рд╕рдлрд▓рддрд╛ рдХрд╛ рдорд╛рд░реНрдЧ рд╣реИI
рдЖрдЗрдП, рд╣рдо рд╕рдм рдорд┐рд▓рдХрд░ рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдЗрд╕ рд╡рд┐рд░рд╛рд╕рдд рдХреЛ рдЖрдЧреЗ рдмрдврд╝рд╛рдПрдБ. рдЧрдгрд┐рдд рдХреЗ рдкреНрд░рддрд┐ рдЬрд┐рдЬреНрдЮрд╛рд╕рд╛ рдЬрдЧрд╛рдПрдБ, рдпреБрд╡рд╛ рдкреНрд░рддрд┐рднрд╛рдУрдВ рдХреЛ рдкреНрд░реЛрддреНрд╕рд╛рд╣рд┐рдд рдХрд░реЗрдВ. рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдХрд╣рд╛рдиреА рд╣рдореЗрдВ рдпрд╣ рд╡рд┐рд╢реНрд╡рд╛рд╕ рджрд┐рд▓рд╛рддреА рд╣реИ рдХрд┐ рднрд╛рд░рдд рдХреА рдзрд░рддреА рдкрд░ рдкреНрд░рддрд┐рднрд╛ рдХрд╛ рдЦрдЬрд╛рдирд╛ рдЫрд┐рдкрд╛ рд╣реИ, рдЬрд┐рд╕реЗ рдвреВрдБрдврдиреЗ рдФрд░ рдирд┐рдЦрд╛рд░рдиреЗ рдХреА рдЬрд╝рд░реВрд░рдд рд╣реИI
Speech-2
рдЖрджрд░рдгреАрдп рдЧреБрд░реБрдЬрди рдФрд░ рдкреНрдпрд╛рд░реЗ рдорд┐рддреНрд░реЛрдВ,
рдЖрдЬ рд╣рдо рдЬрд┐рд╕ рдорд╣рд╛рди рд╣рд╕реНрддреА рдХреЛ рдирдорди рдХрд░ рд░рд╣реЗ рд╣реИрдВ, рдЙрдирдХрд╛ рдирд╛рдо рд╢реНрд░реАрдирд┐рд╡рд╛рд╕ рд░рд╛рдорд╛рдиреБрдЬрди I рдПрдХ рдРрд╕рд╛ рдирд╛рдо, рдЬреЛ рдЧрдгрд┐рдд рдХреЗ рд╕реНрд╡рд░реНрдгрд┐рдо рдЗрддрд┐рд╣рд╛рд╕ рдореЗрдВ рдЪрдордХрддрд╛ рд╣реБрдЖ, рдЕрдирдВрдд рддрдХ рдЬрдЧрдордЧрд╛рддрд╛ рд░рд╣реЗрдЧрд╛I рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдХрд╣рд╛рдиреА рд╕рд┐рд░реНрдл рдПрдХ рдЧрдгрд┐рддрдЬреНрдЮ рдХреА рдирд╣реАрдВ рд╣реИ, рдпрд╣ рд╡рд┐рдкрд░реАрдд рдкрд░рд┐рд╕реНрдерд┐рддрд┐рдпреЛрдВ рдореЗрдВ рдЬреНрд╡рд▓рдВрдд рдкреНрд░рддрд┐рднрд╛ рдХреЗ рдЙрджрдп рдХрд╛ рдЧрд╛рдерд╛рдЧреАрдд рд╣реИI
рдПрдХ рд╕рд╛рдзрд╛рд░рдг рдкрд░рд┐рд╡рд╛рд░ рдореЗрдВ рдЬрдиреНрдореЗ рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдЬрд┐рдЬреНрдЮрд╛рд╕рд╛ рдмрд╛рд▓рдкрди рд╕реЗ рд╣реА рд╕рдВрдЦреНрдпрд╛рдУрдВ рдХреА рд▓рдп рдореЗрдВ рддрд╛рд▓ рдорд┐рд▓рд╛ рдЪреБрдХреА рдереАI рдФрдкрдЪрд╛рд░рд┐рдХ рд╢рд┐рдХреНрд╖рд╛ рдХреА рдХрдореА рдХреЛ рдЙрдиреНрд╣реЛрдВрдиреЗ рдкреБрд╕реНрддрдХрд╛рд▓рдпреЛрдВ рдХреА рд╢рд░рдг рдореЗрдВ рднрд░ рджрд┐рдпрд╛ I рдЙрдирдХреА рдкреНрд░рддрд┐рднрд╛ рдЫрд┐рдкрдХрд░ рди рд░рд╣ рд╕рдХреА, рдПрдХ рджрд░рд┐рдпрд╛ рд╕рд╛рдЧрд░ рдмрд╣реА, рдЬрд┐рд╕рдиреЗ рдЕрдВрдЧреНрд░реЗрдЬ рдЧрдгрд┐рддрдЬреНрдЮ рдореИрдХ-рдореЛрд╣рди рдХрд╛ рдзреНрдпрд╛рди рдЦреАрдВрдЪрд╛ I рдЙрдиреНрд╣реАрдВ рдХреЗ рд╕рд╣рдпреЛрдЧ рд╕реЗ рд░рд╛рдорд╛рдиреБрдЬрди рдЗрдВрдЧреНрд▓реИрдВрдб рдХреА рдкрд╛рд╡рди рдзрд░рддреА рдкрд░ рд╡рд┐рдЬреНрдЮрд╛рди рдХреЗ рдордВрджрд┐рд░ рддрдХ рдкрд╣реБрдБрдЪреЗI
рдпрд╣рд╛рдБ рд╢реБрд░реВ рд╣реБрдЖ, рдЗрддрд┐рд╣рд╛рд╕ рд░рдЪрдиреЗ рдХрд╛ рд╕рд┐рд▓рд╕рд┐рд▓рд╛ I рд╕реИрдХрдбрд╝реЛрдВ рдЧрдгрд┐рддреАрдп рд╕реВрддреНрд░, рдЬрд┐рдиреНрд╣реЗрдВ рджреЗрдЦрдХрд░ рджрд┐рдЧреНрдЧрдЬ рднреА рдЪрдХрд┐рдд рд░рд╣ рдЬрд╛рддреЗ рдереЗI рдЙрдирдХреА рдЧрдгрдирд╛рдПрдБ рдЬрд╛рджреВрдЧрд░реА рдирд╣реАрдВ, рдЕрдкрд┐рддреБ рдЕрдердХ рдкрд░рд┐рд╢реНрд░рдо рдФрд░ рдЕрдЧрд╛рдз рдкреНрд░рддрд┐рднрд╛ рдХрд╛ рдлрд▓ рдереАрдВ I рд╡рд┐рд╢реНрд╡ рдиреЗ рдЙрдиреНрд╣реАрдВ рд╣рдереЗрд▓рд┐рдпреЛрдВ рдкрд░ рд╕рд┐рд░ рдЭреБрдХрд╛рдпрд╛, рдЬрд╣рд╛рдБ рдХрднреА рдЧрд░реАрдмреА рдХреА рд░реЗрдЦрд╛рдПрдБ рдереАрдВ I
рд░рд╛рдорд╛рдиреБрдЬрди рдиреЗ рд╕рд┐рд░реНрдл рд╕реВрддреНрд░ рдирд╣реАрдВ рджрд┐рдП, рдЙрдиреНрд╣реЛрдВрдиреЗ рд╕рдВрдЦреНрдпрд╛рдУрдВ рдХреЗ рдиреГрддреНрдп рдХреЛ рджреЗрдЦрд╛, рд╡рд┐рднрд┐рдиреНрди рд╢рд╛рдЦрд╛рдУрдВ рдХреЛ рдПрдХ рд╕реВрддреНрд░ рдореЗрдВ рдкрд┐рд░реЛрдпрд╛ I рдЙрдирдХреА рдЦреЛрдЬреЛрдВ рдиреЗ рд╡рд┐рдЬреНрдЮрд╛рди рдХреЗ рдХрдИ рдкрд╣рд▓реБрдУрдВ рдХреЛ рдЧрддрд┐ рджреА, рд╕рдВрдЦреНрдпрд╛ рд╕рд┐рджреНрдзрд╛рдВрдд рдХреЗ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рддреЛ рдЙрдирдХреА рдЙрдкрд▓рдмреНрдзрд┐ рдЕрд╡рд┐рд╕реНрдорд░рдгреАрдп рд╣реИ I
рд▓реЗрдХрд┐рди, рдорд╣рд╛рдирддрд╛ рдХрд╛ рдпреЗ рддреВрдлрд╛рди рд╕рд┐рд░реНрдл 32 рд╡рд░реНрд╖реЛрдВ рддрдХ рдЪрд▓рд╛. рдЗрддрдиреЗ рдХрдо рд╕рдордп рдореЗрдВ рдЬрд┐рддрдирд╛ рдЙрдиреНрд╣реЛрдВрдиреЗ рд╣рд╛рд╕рд┐рд▓ рдХрд┐рдпрд╛, рд╡реЛ рд╕рджрд┐рдпреЛрдВ рддрдХ рдкреНрд░реЗрд░рдгрд╛ рджреЗрддрд╛ рд░рд╣реЗрдЧрд╛ I рд░рд╛рдорд╛рдиреБрдЬрди рд╣рдореЗрдВ рд╕рд┐рдЦрд╛рддреЗ рд╣реИрдВ рдХрд┐ рд╕рдкрдиреЛрдВ рдХреЛ рдЬрдЧрд╛рдирд╛ рд╣реА рдХрд╛рдлреА рдирд╣реАрдВ, рдЙрдиреНрд╣реЗрдВ рд╣рдХреАрдХрдд рдмрдирд╛рдиреЗ рдХреЗ рд▓рд┐рдП рдЬреБрдЭрдирд╛ рдЬрд╝рд░реВрд░реА рд╣реИ I
рдЖрдЗрдП, рд╣рдо рдЕрдкрдиреА рд╢рд┐рдХреНрд╖рд╛ рд╡реНрдпрд╡рд╕реНрдерд╛ рдореЗрдВ рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рдЬреНрдпреЛрддрд┐ рдЬрд▓рд╛рдПрдБ I рд╣рд░ рдмрд╛рд▓рдХ рдХреЗ рдорди рдореЗрдВ рдЬрд┐рдЬреНрдЮрд╛рд╕рд╛ рдЬрдЧрд╛рдПрдБ, рдкреНрд░рддрд┐рднрд╛рдУрдВ рдХреЛ рдирд┐рдЦрд╛рд░рдиреЗ рдХрд╛ рд╡рд╛рддрд╛рд╡рд░рдг рджреЗрдВ I рднрд╛рд░рдд рдХреА рдорд╛рдЯреА рдореЗрдВ рдРрд╕реЗ рд╣реА рдЕрдирдореЛрд▓ рд╣реАрд░реЗ рдЫрд┐рдкреЗ рд╣реИрдВ, рдЬрд┐рдиреНрд╣реЗрдВ рддрд░рд╛рд╢рдиреЗ рдХреА рдЬрд╝рд░реВрд░рдд рд╣реИ I рд░рд╛рдорд╛рдиреБрдЬрди рдХреА рд╡рд┐рд░рд╛рд╕рдд рдХреЛ рд╕рдВрдЬреЛрдХрд░, рднрд╡рд┐рд╖реНрдп рдХреЗ рд░рд╛рдорд╛рдиреБрдЬрди рдЧрдврд╝реЗрдВ I
рдЬрдп рд╣рд┐рдВрдж, рдЬрдп рдЧрдгрд┐рдд!
Speech-3
Respected teachers and dear friends,
Today, we gather to pay homage to a true titan of mathematics, Srinivasa Ramanujan. His name is not just etched in the annals of numbers, it echoes through eternity as a testament to the power of brilliance against all odds. Ramanujan’s story is not merely that of a mathematician; it is a symphony of resilience, a ballad of genius rising from the ashes of adversity.
Born into a humble family, Ramanujan’s curiosity found solace in the rhythm of numbers from a young age. Though formal education eluded him, he found solace in the boundless libraries, devouring mathematical treatises like a man parched for knowledge. His talent, however, refused to remain hidden. A chance encounter with the English mathematician MacMahon threw open the doors to a world of scientific splendor. With MacMahon’s support, Ramanujan set foot on the hallowed grounds of England, where the halls of academia awaited his genius.
Thus began an era of unprecedented mathematical brilliance. Hundreds of formulae, each a testament to his profound understanding, flowed from his pen. Equations were so complex they left seasoned mathematicians bewildered were mere child’s play for Ramanujan. The world, once skeptical, bowed its head in awe before the hands that had once known the sting of poverty.
But Ramanujan’s gift extended far beyond mere formulae. He saw the dance of numbers, the intricate threads that bound disparate branches of mathematics. His discoveries propelled scientific progress across various fields, his contributions to number theory are unmatched even today.
Yet, this storm of genius raged for only 32 years. But within that short span, Ramanujan etched a legacy that will inspire generations to come. He teaches us that dreams are not enough, they need the fuel of unwavering dedication to take flight.
Let us, therefore, ignite the Ramanujan spark in our education system. Let us nurture curiosity in every child, cultivate an environment where talent thrives. The soil of India holds countless hidden gems, waiting to be unearthed and polished. By embracing Ramanujan’s legacy, we can create the next generation of mathematical maestros, ensuring that the spirit of genius continues to illuminate the world.
Thank you.
Speech 4
Ladies and gentlemen, fellow travelers on the endless journey of numbers,
We stand today in the shadow of a giant, a man whose mind danced with infinity itself: Srinivasa Ramanujan. His story, etched in the fabric of mathematics, is more than just a collection of equations and theorems; it’s a symphony of the human spirit, a testament to the boundless potential that lies within each of us.
Imagine, if you will, a young boy, his fingers tracing patterns in the dust, his eyes alight with an unseen fire. Formal education a distant dream, he found solace in the whispers of numbers, devoured mathematical tomes like parched earth drinks rain. This was Ramanujan, a prodigy born not in privilege, but in the crucible of circumstance.
Yet, his genius would not be confined by walls of poverty or lack of recognition. It spilled like wildfire, catching the eye of a kindred spirit across the oceans. And so, he found himself on the stage of academia, facing giants of the mathematical world with nothing but his boundless curiosity and a notebook overflowing with formulas that seemed to have sprung from the heavens themselves.
The world watched in disbelief as Ramanujan, the barefoot mathematician, unlocked the secrets hidden within numbers. His theorems, whispered from a world beyond textbooks, stunned even the most seasoned minds. He saw patterns where others saw chaos, connections where others saw isolation. He was a poet of numbers, his equations symphonies of pure thought.
But Ramanujan’s legacy transcends mere equations. He reminds us that genius can bloom in the most unexpected soil, that poverty and circumstance are not walls, but hurdles to be overcome. He whispers to every curious child, “Do not be afraid to dream, to seek the infinite in the finite, the magic in the mundane.”
His life, though tragically brief, was a meteor that blazed across the mathematical sky, leaving an indelible mark. It is a beacon, urging us to nurture the sparks of curiosity in every young mind, to create a world where genius, regardless of its origin, finds its wings and soars.
Let us carry his torch, not just by studying his theorems, but by embodying his spirit. Let us nurture the Ramanujans within us, the dreamers, the explorers, the seekers of the hidden harmonies of the universe. For in doing so, we honor not just his memory, but the boundless potential that lies within every one of us.
Thank you.
Regards
Principal, Dr. Vinesh Chauhan [Ph.D. Chemistry, B.Ed., MBA, PGDESD (University Gold Medalist)

Great experience
Dr. Vinesh Chauhan’s brilliance shines in every aspect – PhD chemistry, B.Ed. Educator, MBA Strategist, PGDESD Gold Medalist. 18 years of academic experience, distilled into pure inspiration. Simply the best!